Douglas Lake Claim Assessment Surface Exploration and Sampling

> Douglas Lake Claim S111969

D. Skye Kushner Field Work Conducted: June 11, 2017 – June 16, 2017

Work Conducted by: D. Skye Kushner 1008 Cloverdale Rd., St. Andrews, MB, R1A 4J4 Report Written by: D. Skye Kushner Date Written: January 22nd, 2018

Table of Contents

Table of Contentsi
List of Figures: ii
List of Tables:ii
Introduction:
Location and Access:
Dispositions, Owners/Joint Ventures:
Regional Geology:
Property Geology:
Exploration History:
Current Exploration:
Results:7
Interpretations:
Field Observations:
Geochemical interpretation:12
Conclusions and Recommendations:
References:
Appendix 1: Personnel List
Appendix 2: Sample Location and Description13
Appendix 3: Assay Results and Laboratory Certificates17

List of Figures:

Figure 1: Location and access to claim S111969 shown in relation to Flin Flon/Creighton (below) and	
surrounding mineral claims (above).	2
Figure 2: Geology of the Flin Flon Belt including dominant assemblages and producing mines. Relation o	of
the Flin Flon Belt to the Trans-Hudson Orogen shown in the upper right (modified from Simard and	
MacLachlan, 2009)	3
Figure 3: Douglas Lake property geology from Thomas (1989)	4
Figure 4: Sample stations from 2017 field campaign	6
Figure 5: Clast composition in the Hidden Formation. (left) Angular brecciated tuff clasts with mafic	
groundmass. (right) Well-rounded mafic clasts with felsic groundmass	8
Figure 6: Rhyolitic dykes within tuff.	9
Figure 7: Douglas unit basalts. (left) Shear zone within stripped and bleached area. (right) Amygdules	
within basalt1	.0
Figure 8: Granitic unit intruding the northwest quadrant of the property containing an undeformed	
quartz vein1	.1

List of Tables:

Table 1: Summary of Work completed at Claim S111969	5
Table 2: Base and precious metal analytical results from samples collected during 2017 field campaign	.7

Introduction:

From June 11th to June 15th, 2017 the author of this report conducted a surface sampling programme for the Douglas Lake claim under the direction of the claim holder, Nordic Minerals Ltd.; A private company headed by Mr. Donald Benson, CEO.

Previous information made available for this property were site assessment reports by George C. Sharpe (Pers. Comm., 2012), J.D. Krebs (Pers. Comm., 2012), and Foran Mining Corporation (Pers. Comm., 2015) in addition to past assessments from academic and government sources.

This report will present a summary of the field work conducted, including sample locations and assay results, in addition to recommendations for future work.

Location and Access:

Claim S111969 is located approximately 1 km west of the town of Creighton, SK, and is accessible by car through provincial highway 167, which runs through the claim (Figure 1). The northwestern quadrant of the claim is traversable through a low-cut path supporting powerlines running north-south along the western portion of the claim. Access to islands on Douglas Lake is only possible using non-motorized boats due to boating restrictions on the lake.

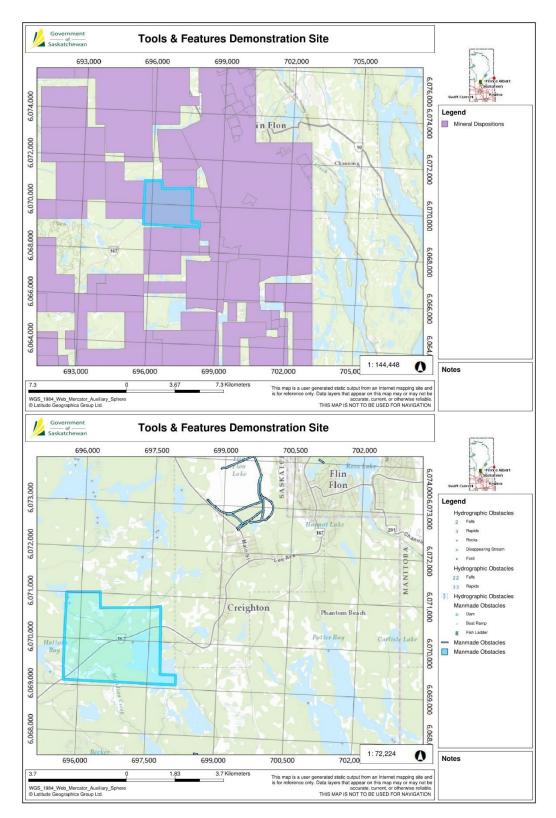


Figure 1: Location and access to claim S111969 (blue) shown in relation to Flin Flon/Creighton (below) and surrounding mineral claims (above).

Dispositions, Owners/Joint Ventures:

Claim S111969 is 100% owned by Nordic Minerals Ltd., a private company headed by Donald Benson, CEO. The claim is 366 hectares in area Mineral Disposition is in good standing to February 4, 2018.

Regional Geology:

The Trans-Hudson Orogen is a collisional event resulting from the Archean collision of the Superior and Rae-Hearne Cratons from 1.83 – 1.8 Ga. Orogenic events led to the formation of greenstone belts extending through South Dakota, Saskatchewan, Manitoba, and Northern Quebec (Figure 2). The Flin Flon Belt is one of such belts comprising the area around Flin Flon, MB. The belt is subdivided into four assemblages dated to 1.92 - 1.88 Ga (Simard and MacLachlan, 2009): juvenile arc, ocean floor (back-arc), ocean plateau, and evolved arc (Figure 2). Claim S111969 contains lithologies within the juvenile arc subdivision.

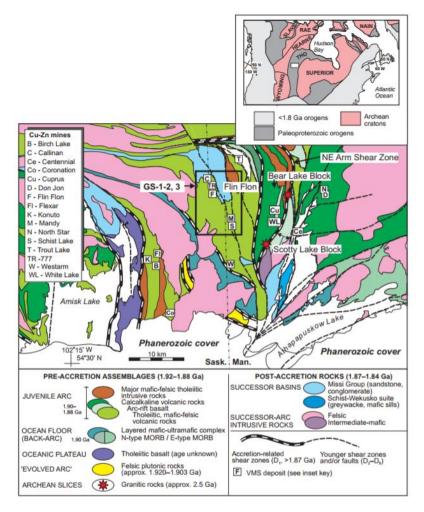


Figure 2: Geology of the Flin Flon Belt including dominant assemblages and producing mines. Relation of the Flin Flon Belt to the Trans-Hudson Orogen shown in the upper right (modified from Simard and MacLachlan, 2009).

Property Geology:

Mapping of the area encompassing and surrounding claim S111969 has been conducted by Thomas (1989; Figure 3), MacLachlan (2006), and Simard and MacLachlan (2009). The property broadly contains two volcanic units, The Douglas Formation and the Hidden Formation, in addition to a syn-volcanic intrusive unit to the northeast. Lithologies that have been mapped and recognised include: strongly amygdaloidal, aphyric greenish pillowed mafic flows, in part with abundant flow top breccia; plagioclase porphyritic pillowed mafic flows; plagioclase crystal-rich heterolithic mafic breccia and tuff-breccia, locally with felsic fragments; and thin to medium bedded mafic tuff and lapilli-tuff (MacLachlan, 2006). These units are recognised as representative of the lower succession of the Douglas Formation and in stratigraphic succession to the east with upper units of the Hidden Formation. Hidden formation upper units include: laminated mafic tuffs containing sporadic sulfide mineralization; rhyolitic lapilli tuff; rhyolite-bearing breccia beds (DeWolfe and Gibson, 2006).

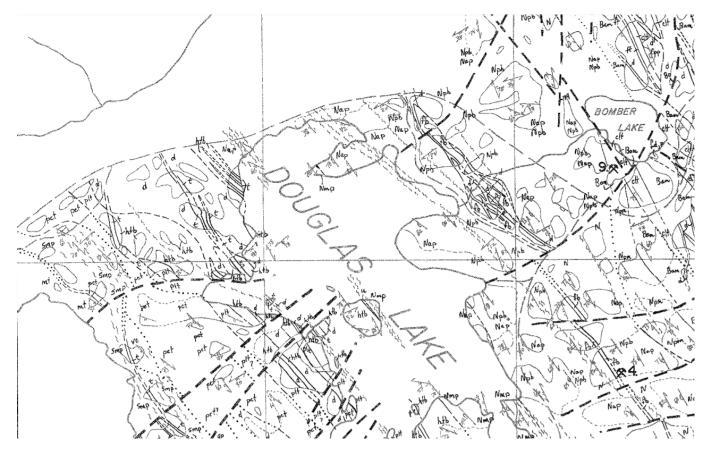


Figure 3: Douglas Lake property geology from Thomas (1989).

Exploration History:

A history of exploration on the mineral property is presented below from compiled reports:

Year	Work Done	Completed By	Assessment Report # (Saskatchewan Energy and minerals, 2018)
?-1936	Historical trenching	?	N/A
1953-1954	EM surveying	Hudson Bay Exploration and Development	N/A
1967	Further EM surveying	?	N/A
1977	Staking and surface exploration	Hudson Bay Exploration and Development	N/A
1977,1989,1991	Drilling	Hudson Bay Exploration and Development	N/A
1989	Bedrock mapping of the area covering the claim	D. J. Thomas (1989)	MAW00405
2005-2010	Regional mapping	NRCAN project	MAW00405
2011	Staking	Nordic Minerals Ltd.	MAW00405
2012,2013	Surface exploration and sampling	Nordic Minerals Ltd.	MAW00405

Current Exploration:

From June 11th to June 15th, 2017, personnel involved with fieldwork (Appendix 1) obtained a comprehensive suite of grab samples was claim S111969 (Figure 4; Appendix 2). These samples included re-sampling of existing sites for new targets and an extension of the current base of samples into the northwest and southeast sections of the claim. Materials sampled from each site included host lithology and quartz veins. Where applicable, structural measurements were taken.

Samples were placed into sterile plastic bags based on sample type, then larger plastic buckets to be shipped for analysis. In total, 50 samples were sent for analysis. All analysis was completed by the Saskatchewan Research Council (SRC). Samples were analyzed for base and trace metals by Fire Assay and ICP-MS. Sample treatment for analysis was also preformed by SRC. Duplicate and representative samples were collected and are held by D. Skye Kushner to be delivered to Nordic Minerals Ltd. At request.

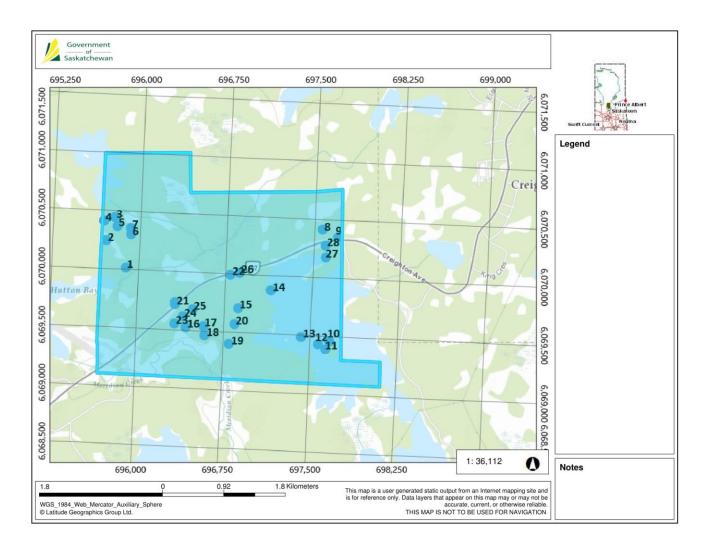


Figure 4: Sample stations from 2017 field campaign, claim boundary is highlighted in blue.

Geochemical Results:

Selected analytical results for base and precious metals are shown below (Table 2); a complete listing of analytical results is given in Appendix 3.

Station	Sample ID	Au (ppb)	Ag (ppm)	Mo (ppm)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)
1	DL-17-1	<2	<0.2	13	46	30	1	82
1	DL-17-2	<2	<0.2	<1	33	6	2	40
2	DL-17-3		<0.2	<1	6	1	5	13
3	DL-17-4	<2	<0.2	<1	51	33	5	88
3	DL-17-5	<2	<0.2	<1	1	<1	<1	3
3	DL-17-6	3	<0.2	<1	142	13	1	20
4	DL-17-7	<2	0.2	<1	42	11	<1	31
5	DL-17-8	49	<0.2	<1	3	1	2	7
6	DL-17-9	<2	0.7	<1	111	2	4	6
7	DL-17-10	<2	<0.2	<1	9	3	6	23
8	DL-17-11	<2	0.3	<1	193	8	1	16
8	DL-17-11 (0A)	<2	0.4	<1	208	4	1	123
8	DL-17-11 (0B)	<2	0.2	<1	137	2	<1	70
8	DL-17-11 (0C)	<2	<0.2	<1	32	1	<1	56
8	DL-17-11 (5mm)	<2	0.6	<1	256	2	7	84
8	DL-17-11 (10mm)	<2	0.2	<1	74	7	7	65
9	DL-17-12	10	<0.2	<1	7	<1	6	7
9	DL-17-13	<2	0.7	<1	121	<1	4	54
9	DL-17-14		0.3	<1	204	1	<1	39
10	DL-17-15 A	<2	0.3	14	99	16	3	77
10	DL-17-15 B	<2	0.3	<1	100	12	9	80
10	DL-17-16 A	<2	0.2	<1	91	25	<1	68
10	DL-17-16 B	2	0.3	<1	114	24	<1	64
11	DL-17-17 A	<2	<0.2	<1	116	21	1	54
12	DL-17-17 B	2	<0.2	<1	93	19	4	55
13	DL-17-19	<2	<0.2	<1	138	27	11	188
14	DL-17-20 A	3	0.2	<1	37	5	3	67
14	DL-17-20 B	<2	0.2	<1	156	9	4	99
14	DL-17-20 C	<2	<0.2	<1	16	5	7	84
14	DL-17-20 D	6	0.2	<1	8	23	1	166
15	DL-17-21	<2	<0.2	<1	152	1	7	55
15	DL-17-21 A	10	<0.2	<1	2	9	3	43
16	DL-17-22 A	<2	1.3	<1	449	8	<1	221
16	DL-17-22 B	17	0.2	<1	84	<1	1	92
16	DL-17-22 C	12	1.1	<1	1350	1	6	52
16	DL-17-22 D	3	0.6	<1	692	1	5	114
17	DL-17-23	13	0.4	<1	325	1	1	57
18	DL-17-24 A	<2	<0.2	<1	34	23	<1	74
18	DL-17-24 B	2	<0.2	<1	38	18	<1	58

Table 2: Base and precious metal analytical results from samples collected during 2017 field campaign (samples from station 14 not sent for analysis).

19	DL-17-25	<2	<0.2	14	38	14	6	83
20	DL-17-26	82	0.3	<1	97	19	3	77
21	DL-17-27 A	2	0.5	<1	555	4	3	49
22	DL-17-28	57	0.2	<1	52	9	<1	102
23	DL-17-29 A	190	0.3	<1	95	8	<1	99
23	DL-17-29 B	<2	0.3	<1	130	8	<1	110
24	DL-17-30	<2	<0.2	<1	9	3	2	60
25	DL-17-31	<2	<0.2	<1	134	4	<1	122
26	DL-17-32	19	0.3	<1	22	12	<1	143
27	DL-17-33 A	<2	<0.2	<1	277	6	30	156
28	DL-17-33 B	<2	<0.2	<1	27	13	5	115

Interpretations:

Field Observations:

Lithologies associated with The Hidden formation is observed at the southwestern to south central portion of claim S111969. Clast composition and abundance within brecciated rocks differ greatly from southwest to northeast (Figure 5). In closest contact with the Douglas formation to the northeast, clasts are predominantly basaltic, 50 - 70% of the groundmass, 20 - 50 cm in size, well rounded, prolate, and have a fabric of $325^{\circ}/90^{\circ}$. Sulfides are present as an accessory mineral in both the groundmass and clasts. Further to the southwest clast abundance decreases substantively (0 - 30% clasts) before a shift to a heavily brecciated unit (>70% clasts) consisting of felsic tuff clasts. Tuff clasts are 1 - 50 cm in size, angular to sub-rounded, equant, and do not have a discernable fabric. Sulphides are not as abundant in this area of the hidden formation. Furthest to the southeast the dominant lithology is a massive lapilli tuff with sparse accessory sulphides. A sequence of rhyolitic intrusions (Figure 6) is observed and traced for over 300 m from a bleached outcrop on the western shore of Douglas Lake further inland at $335^{\circ}/78^{\circ}$. These intrusions range in size from 1 - 10 + m.

Figure 5: Clast composition in the Hidden Formation. (left) Angular brecciated tuff clasts with mafic groundmass. (right) Well-rounded mafic clasts with felsic groundmass.

Figure 6: Rhyolitic dykes within tuff.

Douglas formation units are located at the northeastern portion of the claim directly off provincial highway 167. These outcrops have previously been stripped and bleached leaving high surface visibility. The unit is dark-greyish green to rusty brown on the weathered surface and black on a fresh surface (Figure 7). Overall the unit is pillowed and strongly amygdaloidal (Figure 7) with minor amounts of localized chlorite alteration. Shear zones within this unit are traced over 200 m are observed at approximately 340°/90°. A rhyolitic intrusion 2.5 m wide is observed at approximately 340°/90° near the central northern part of the unit. Sulfides are present ubiquitously as an accessory mineral and in some localized areas, specifically near shear zones, may comprise 5 – 10% of the volume.

Figure 7: Douglas unit basalts. (left) Shear zone within stripped and bleached area. (right) Amygdules within basalt.

The Synvolcanic granitic unit is compositionally a granite to granodiorite which has intruded the northwestern quadrant of the claim (Figure 8). The unit is medium grained, plagioclase-porphyritic to the upper-easternmost portions and contains K-feldspar phenocrysts 1-5 mm in size to the west and southern boundaries. No fabrics are observed within the granite. Accessory sulfides of pyrite and chalcopyrite are observed throughout.

Figure 8: Granitic unit intruding the northwest quadrant of the property containing an undeformed quartz vein.

Quartz veins intrude all observed units at an average orientation of 345°/85°. The majority (>90%) are milky white and some are visibly oxidized at surface. Width varies between approximately 1.5 m to < 1 cm and an average width of approximately 10 cm. Of the quartz veins sampled, minor amounts of sulphides are in the oxidized veins and none are in the milky white variety. Deformation is atypical and most run parallel to bedding and existing faults or fractures (Figure 8).

Previous attempts have been made in an earlier assessment by J.D. Krebs (Pers. Comm. 2012) to locate coordinates for the historical GAW-5 drill site. Like the previous attempt, the drill site was located but no casing was observed.

A heavily sheared and chloritized zone approximately 4 m wide is observed in a small roadside outcrop midway down provincial highway 167. This zone may represent the contact between the Hidden and Douglas formations and is otherwise overlain by Douglas Lake to the south and a marsh to the North.

Geochemical interpretation:

This area is mentioned explicitly in reports of Dewolf and Gibson (2006) and MacLachlan (2006) as potentially attractive targets for VMS exploration, denoting the proximity and similar stratigraphy to the historical Newcor mine. Au in similar types of deposits within the are contained within sulfides. All host rock samples sent to the SRC contained visible sulfides, yet no samples yielded sufficient quantities of Au to be considered economical. Further comparison to published results of samples taken from the Phantom Lake area in Thomas (1990) show generally similar concentrations of base metals, but significantly lower quantities of Au in almost every unit sampled. A reserve grade of Similarly, no economical quantities of base metals were analyzed within the host rock samples. Quartz veins which have been tested for Au are similarly not economical.

Conclusions and Recommendations:

This project has extended mapping coverage and sample base for claim S111969 to include southern portions of the claim including islands on Douglas Lake and norther portions including the synvolcanic granitic unit.

Surface sampling and subsequent analysis has not returned results deemed significant by the author of this report to warrant future surface sampling. Geophysical anomalies discovered in previous assessments still presents a possible target for future mineral exploration which may be delineated from detailed investigation. Future work on the property are recommended to be carried out in the following order:

- 1. Expansion of geochemical database for this claim using all historical geochemical data from previous reports.
- 2. Retrieval and relogging of any remaining core from the GAW 5 drill hole for further subsurface interpretation.
- 3. Review of existing geophysical data and geochemical data by a qualified person to identify possible drill targets.
- 4. Further geophysical surveying using an appropriate technique with higher resolution then existing datasets to identify subsurface drill targets.
- 5. Conduction of a drill program based on identified targets.

Obfuscation of the Douglas Formation and Hidden Formation contact by Douglas Lake and marshes, coupled with an insufficient surface expression of economical mineral targets underscore the need for geophysical interpretation in identifying future drill targets.

References:

DeWolfe, Y.M. and Gibson, H.L. 2006: Stratigraphic subdivision of the Hidden and Louis formations, Flin Flon, Manitoba (NTS 63K16SW); in Report of Activities 2006, Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey, p. 22–34

MacLachlan (2006): Stratigraphy, structure, and silicification: new results from mapping in the Flin Flon Mining Camp, Creighton, Saskatchewan; in Summary of Investigations Volume 2, 2006, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2006-4.2, CD-ROM, Paper A-9, 25p.

Saskatchewan Energy and Resources (2018): On-line Mineral Assessment File System (MAW00405); Saskatchewan Energy and Resources Available April 19, 2018.

Simard, R-L. and MacLachlan, K. 2009: Highlights of the new 1:10 000 scale geology map of the Flin Flon area, Manitoba and Saskatchewan (part of NTS 63K12, 13); in Report of Activities 2009, Manitoba Innovation, Energy and Mines, Manitoba Geological Survey, p. 6–14.

Thomas D.J. (1989): The geology of the Douglas Lake- Phantom Lake area (part of NTS 63K-12 and -13); in Summary of Investigations 1989, Saskatchewan Geological Survey, Miscellaneous Report 89-4, p.55-57.

Thomas, D.J. (1990): New perspective of the Amisk Group and regional metallogeny, Douglas Lake -Phantom Lake area, northern Saskatchewan; in Summary of Investigations 1990, Saskatchewan Geological Survey; Saskatchewan Energy and Mines, Miscellaneous Report 90-4.

Personnel	Position	Dates Worked	Type of work	
D. Skye Kushner	Contractor	June 11 – June 16,	Field campaign;	
		2017; January 15,	report preparation	
		January 20, 2018		
Thomas Donak	Subcontractor	June 11 – June 16, 2017	Field campaign	

Appendix 1: Personnel List

Appendix 2: Sample Location and Description

Station	Sample Code	Zone	Easting (14U)	Northing (14U)	Lithology	Details	Assoc. Form. (speculative)
1	DL-17-1	14U	309652	6069777	Granite	plag porphyritic granite, massive, ~5% phenocrysts k- feld 1-5mm, few quartz veins 0.3- 2cm wide @334/85	Arc assemblage granites
1	DL-17-2	14U	309652	6069777	qtz vein	plag porphyritic granite, massive, ~5% phenocrysts k- feld 1-5mm, few quartz veins ~10cm wide @334/85	Arc assemblage granites
2	DL-17-3	14U	309498	6070021	qtz vein	~10 cm wide qtz vein from qtz vein, vis sulf	Arc assemblage granites

3	DL-17-4	14U	309575	6070213	granite	host granodiorite w/ vis sulf	Arc assemblage granites
3	DL-17-5	14U	309575	6070213	qtz vein	~50 cm wide qtz vein white w/o vis sulf	Arc assemblage granites
3	DL-17-6	14U	309575	6070213	qtz vein	greissened 4 cm wide qtz vein	Arc assemblage granites
4	DL-17-7	14U	309482	6070189	qtz vein	greissened qtz vein @ 355/88, host granite no longer plag phyric	Arc assemblage granites
5	DL-17-8	14U	309595	6070135	qtz vein	~5 cm vein and host granite, no vis sulf, vein @ 335/90	Arc assemblage granites
6	DL-17-9	14U	309707	6070064	qtz vein	qtz vein w/ no vis sulf @350/90, plag phyric granite host	Arc assemblage granites
7	DL-17-10	14U	309707	6070114	qtz vein	white qtz vein ~50 cm wide, discontinuous, vis. For ~10 m	Arc assemblage granites
8	DL-17- 11(0A)	14U	311489	6070007	volcanic (flow)	Shear zone? w/ ~5- 10% sulf	Newcor formation
8	DL-17- 11(0B)	14U	311489	6070007	volcanic (flow)	10 m up trench (North)	Newcor formation
8	DL-17- 11(0C)	14U	311489	6070007	volcanic (flow)	10 m down trench (South)	Newcor formation
8	DL-17- 11(5m)	14U	311489	6070007	volcanic (flow)	5 m East of trench	Newcor formation
8	DL-17- 11(10m)	14U	311489	6070007	volcanic (flow)	10 m West of trench	Newcor formation
8	DL-17-11	14U	311489	6070007	volcanic (flow)	Grab sample from plag-phyric basalt	Newcor formation
9	DL-17- 12A	14U	311489	6069957	qtz vein	greissened qtz vein ~70 cm wide, continuous over outcrop	Newcor formation
9	DL-17-13	14U	311489	6069957	volcanic (flow)	greissened basalt	Newcor formation
9	DL-17-14	14U	311489	6069957	volcanic (flow)	greissened basalt	Newcor formation
10	DL-17- 15A	14U	311370	6069068	volcanic (clastic)	clasts of basalt flow w/ vis sulf, Flow fabric @ 325/90, ~50-70% clasts	Douglas formation
10	DL-17-	14U	311370	6069068	volcanic	flow matrix w/ sulf	Douglas
	15B				(clastic)		formation

10	DL-17- 16A	14U	311370	6069068	volcanic (clastic)	Vis. Nat. Cu in clast?	Douglas formation
10	DL-17- 16B	14U	311370	6069068	volcanic (clastic)	Vis. Nat. Cu in clast?	Douglas formation
11	DL-17- 17A	14U	311297	6069050	volcanic (clastic)	Vis. Nat. Cu in clast?	Douglas formation
12	DL-17- 17B	14U	311247	6069100	volcanic (clastic)	flow matrix w/ vis sulf, ~10% clasts	Douglas formation
13	DL-17-19	14U	311137	6069116	volcanic (clastic)	tuff w/o clasts	Douglas formation
14	DL-17- 20A	14U	310891	6069530	high level dyke	heavy tuff clasts (~70%), plag phyric dykes between 1.5- 10 m wide @335/78	Douglas formation
14	DL-17- 20B	14U	310891	6069530	high level dyke	heavy tuff clasts (~70%), plag phyric dykes between 1.5- 10 m wide @335/79	Douglas formation
14	DL-17- 20C	14U	310891	6069530	high level dyke	heavy tuff clasts (~70%), plag phyric dykes between 1.5- 10 m wide @335/80	Douglas formation
14	DL-17- 20D	14U	310891	6069530	high level dyke	heavy tuff clasts (~70%), plag phyric dykes between 1.5- 10 m wide @335/81	Douglas formation
15	DL-17- 21A	14U	310600	6069389	qtz vein	~1 m wide discontinuous qtz vein. No vis sulf	Douglas formation
	DL-17- 21B	14U	310600	6069389	volcanic (clastic)	~30% vis tuff clasts	Douglas formation
16	DL-17- 22A	14U	310143	6069245	qtz vein	qtz vein w/ vis sulf	Douglas formation
16	DL-17- 22B	14U	310143	6069245	qtz vein	qtz vein w/ vis sulf	Douglas formation
16	DL-17- 22C	14U	310143	6069245	volcanic (calstic)	flow matrix w/ vis sulf, ~10-30% mafic clasts	Douglas formation
16	DL-17- 22D	14U	310143	6069245	volcanic (calstic)	flow matrix w/ vis sulf, ~10-30% mafic clasts	Douglas formation
17	DL-17-23	14U	310298	6069246	volcanic (mafic?)	host rock w/ sulf, massive, NE trending qtz veins	Douglas formation

18	DL-17-	14U	310298	6069172	volcanic	plag-phyric tuff	Douglas
-	24A	-			(tuff)	w/o clasts. Vis sulf.	formation
18	DL-17- 24B	14U	310298	6069172	volcanic (tuff)	plag-phyric tuff w/o clasts. Vis sulf.	Douglas formation
19	DL-17-25	14U	310510	6069084	volcanic (tuff)	plag-phyric tuff w/o clasts. No vis sulf., near historic drill site	Douglas formation
20	DL-17-26	14U	310568	6069249	volcanic (tuff)	plag-phyric tuff w/o clasts. No vis sulf.	Douglas formation
21	DL-17- 27A	14U	310059	6069448	qtz vein	~ 50 cm wide heterogeniousely greissened qtz vein, host is plag-phyric tuff, 1.5-10 m wide felsic dykes observed @ 320/90	Douglas formation
22	DL-17-28	14U	310549	6069678	volcanic (flow?)	1-5 cm wide deformed white qtz veins in mafic flows (?),	Douglas formation
23	DL-17- 29A	14U	310050	6069283	volcanic (tuff)	Host rock roadside sample w/ no vis sulf, location has mafic dyke 2+ m wide	Douglas formation
23	DL-17- 29B	14U	310050	6069283	volcanic (tuff)	mafic dyke 2+ m wide w/ white qtz veins, no vis sulf	Douglas formation
24	DL-17-30	14U	310125	6069333	volcanic	Shear fabric w/ chloite alteration	Douglas formation
25	DL-17-31	14U	310211	6069392	volcanic (flow?)	mafic dyke 3+ m wide	Douglas formation
26	DL-17-32	14U	310632	6069689	qtz vein	greissened qtz vein 10 cm wide, vis sulf.	Newcor Formation
27	DL-17- 33A	14U	311380	6069890	volcanic (flow)	host rock w/ vis sulf.	Newcor Formation
28	DL-17- 33B	14U	311380	6069890	qtz vein	greissened qtz vein ~4 cm wide w/. Vis sulf	Newcor Formation

Appendix 3: Assay Results and Laboratory Certificates

125 - 15 Innovation Boulevard, Saskatoon, SK Canada S7N 2X8 129 - 6 Research Drive, Regina, SK Canada S4S 7J7 221 - 1061 Central Avenue, Prince Albert, SK Canada S6V 4V4

 T: 306-933-5400
 F: 306-933-7446

 T: 306-787-9400
 F: 306-787-8811

 T: 306-765-2840
 F: 306-765-2844

 E: info@src.sk.ca
 www.src.sk.ca

INVOICE # 163430

50.000

50.000

16.100

15.300

Sales Total:

Tax: GST

805.00

765.00

September 28, 2017	Make cheque p	ayable to:	Saskatchewan Research Council					
Nordic Minerals Ltd.	Please call Acco Accounting Ph:		125-15 Innovation Saskatoon, Sk., s nents by VISA or M email: ar@src.sl	S7N 2X8 //asterCard				
4727 Roblin Blvd Winnipeg, MB R3R 0G2	Customer PO Contract # Reference	17-1	17-1541					
Attention: Accounts Payable	Customer No.	. 3114	16	Page: 1 of 1				
DESCRIPTION		Qty	Price	Amount				
Au Fire Assay by ICP		50.000	15.100	755.00				

Crush & Agate Grind

Multi-Element ICP Analysis

GST Registration No. R107864258

2,441.25

2,325.00 116.25

Terms: A/R Net 30

10383

Interest of 18% per annum, compounded monthly, will be charged on all accounts over 30 days

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd. Saskatoon, Saskatchewan S7N 2X8 Phone : (306) 933-8118 Fax : (306) 933-5656

Sample Shipment Receipt Notification

Aug 15, 2017

Skye Kushner 1008 Clovardale Rd. St. Andrews, MB R1A 4J4 Attn: Skye Kushner

Shipment Number was received on Aug 15, 2017 comprising of 1 box. The sample(s) have been assigned group # G-2017-1541.

A complete sample number receipt verification shall be e-mailed when the samples are ready for processing.

Shipment Received by: Leinani Sydow

SRC GEOANALYTICAL LABORATORIES

Sample Receipt Report

Group # 17-1541 Skye Kushner

Skye Kushner 1008 Clovardale Rd. St. Andrews, MB R1A 4J4 Attn: Skye Kushner

Rejects will be stored for 2 years and then discarded. Pulps will be stored at an additional cost.

The following is a record of sample numbers received, sorted in their respective radiation levels.

Basement samples with Radiation Level: Normal

DL-17-9 DL DL-17-11 (0B) DL DL-17-12 DL DL-17-15 B DL DL-17-20 C DL DL-17-23 DL DL-17-26 DL	-17-10 -17-11 (0C) -17-13 -17-16 A -17-19 -17-20 D -17-22 B -17-22 A -17-24 A -17-27 A	DL-17-7 DL-17-11 (5mm) DL-17-14 DL-17-16 B DL-17-20 A DL-17-21 DL-17-22 C DL-17-24 B DL-17-28 DL-17-31	DL-17-8 DL-17-11 (0A) DL-17-11 (10mm) DL-17-15 A DL-17-17 A DL-17-20 B DL-17-20 B DL-17-21 A DL-17-22 D DL-17-25 DL-17-29 A DL-17-32
DL-17-29 B DL		DL-17-31	DL-17-32

Number of Basement Normal samples was: 50

Total number of samples was: 50

Skye Kushner Attention: Skye Kushner PO #/Project: Samples: 52

SRC Geoanalytical Laboratories 125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca Fire Assay

Report No: G-2017-1541

Date of Report: Sep 13, 2017

Column Header Details

Au Fire Assay by I	CP in ppb (Au)
Sample	Au
Number	ppb
DL-17-1	<2
DL-17-2	<2
DL-17-3	<2
DL-17-3	<2
DL-17-4	2
DL-17-5	<2
DL-17-6	<2
DL-17-7	3
DL-17-8	<2
DL-17-9	49
DL-17-10	<2
DL-17-11 DL-17-11 (0A) DL-17-11 (0B) DL-17-11 (0C) DL-17-11 (5mm)	<2 <2 <2 <2 <2 <2
DL-17-11 (10mm)	<2
DL-17-12	<2
DL-17-13	10
DL-17-14	<2
DL-17-15 A	<2
DL-17-15 B DL-17-16 A DL-17-16 B DL-17-17 A DL-17-17 B	<2 <2 <2 2 2 <2
DL-17-19	2
DL-17-20 A	<2
DL-17-20 B	3
DL-17-20 C	<2
DL-17-20 D	<2
DL-17-21	6
DL-17-21 A	<2
DL-17-22 A	10
DL-17-22 B	<2
DL-17-22 C	17
DL-17-22 D	12
DL-17-23	3
DL-17-22 D R	13

Page 1 of 2

Skye Kushner Attention: Skye Kushner PO #/Project: Samples: 52		125 el: (
Sample	Au	
Number	ppb	
DL-17-24 A	<2	
DL-17-24 B	<2	
DL-17-25	2	
DL-17-26	<2	
DL-17-27 A	82	
DL-17-28	2	
DL-17-29 A	57	
DL-17-29 B	190	
DL-17-30	<2	
DL-17-31	<2	
DL-17-32	<2	
DL-17-33 A	19	
DL-17-33 B	<2	
DL-17-33 B R	<2	
BE 17 00 B 11	~~	

Fire Assay: A pulp is subjected to standard fire assaying procedures.

SRC Geoanalytical Laboratories 25 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 : (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

el: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.c Fire Assay Report No: G-2017-1541

Date of Report: Sep 13, 2017

Page 2 of 2

Skye Kushner Attention: Skye Kushner PO #/Project: Samples: 55

Column Header Details

Silver in ppm (Ag) Aluminum in wt % (Al2O3) Arsenic in ppm (As) Barium in ppm (Ba) Berylium in ppm (Be)

Bismuth in ppm (Bi) Calcium in wt % (CaO) Cadmium in ppm (Cd) Cobalt in ppm (Co) Chromium in ppm (Cr)

Copper in ppm (Cu) Iron in wt % (Fe2O3) Mercury in ppm (Hg) Potassium in wt % (K2O) Lanthanum in ppm (La)

Magnesium in wt % (MgO) Manganese in wt % (MnO) Molybdenum in ppm (Mo) Sodium in wt % (Na2O) Nickel in ppm (Ni)

Phosphorus in wt % (P2O5) Lead in ppm (Pb) Sulfur in ppm (S) Antimony in ppm (Sb) Scandium in ppm (Sc)

Selenium in ppm (Se) Tin in ppm (Sn) Strontium in ppm (Sr) Titanium in wt % (TiO2) Uranium in ppm (U, ICP)

Vanadium in ppm (V) Tungsten in ppm (W) Yttrium in ppm (Y) Zinc in ppm (Zn) Zirconium in ppm (Zr)

SRC Geoanalytical Laboratories 125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

Multi-Element ICP Analysis Aqua Regia Digestion

Report No: G-2017-1541

Date of Report: Aug 31, 2017

Page 1 of 5

Skye Kushner Attention: Skye Kushn	er				125 -		C Geoa					288				Rep	oort No: C	-2017-1541
PO #/Project:							118 Fax:									Date of	Report: A	ug 31, 2017
Samples: 55						ň.,	M. 141	Element	ICD 4		0							2
								ua Regia										
Sample	Ag	AI2O3	As	Ba	Be	Bi	CaO	Cd	Co	Cr	Cu	Fe2O3	Hg	K2O	La	MgO	MnO	Mo
Number	ppm	wt %	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	wt %	ppm	wt %	ppm	wt %	wt %	ppm
LS4	0.2	6.10	15	314	1.5	1	0.50	1	41	87	51	10.7	<1	0.54	38	1.12	0.698	13
DL-17-1 DL-17-2	<0.2	3.89 0.74	10 6	41	<0.5 <0.5	1 <1	2.83	1 <1	16 3	51 15	46 33	4.94	<1	0.34	27	4.86 0.73	0.047	<1
DL-17-3	<0.2	0.09	2	3	<0.5	<1	0.03	<1	<1	17	6	0.14	<1 <1	< 0.03	<1	0.73	0.009	<1 <1
DL-17-4	<0.2	3.74	13	418	<0.5	7	0.85	1	18	56	51	4.47	<1	1.78	16	3.08	0.045	<1
DL-17-5	-0.2	0.01		1	-0 E		0.02			15	1	0.05		< 0.01		0.02	< 0.002	
DL-17-5 DL-17-6	<0.2 <0.2	0.01	<1 8	9	<0.5 <0.5	<1 <1	0.02	<1 <1	<1 11	15 12	142	0.05	<1 <1	<0.01	<1 <1	0.02	<0.002	<1 <1
DL-17-7	0.2	1.35	7	37	<0.5	3	2.19	<1	4	29	42	1.75	<1	0.22	10	1.11	0.008	<1
DL-17-8	<0.2	0.05	1	2	<0.5	<1	0.03	<1	<1	13	3	0.09	<1	< 0.01	<1	0.04	< 0.002	<1
DL-17-9	0.7	0.08	9	2	<0.5	<1	< 0.01	<1	7	13	111	0.67	<1	<0.01	<1	0.04	< 0.002	<1
DL-17-10	<0.2	0.29	4	6	<0.5	<1	0.09	<1	2	14	9	0.41	<1	0.01	1	0.20	0.007	<1
DL-17-11	0.3	1.32	10	7	<0.5	1	1.92	<1	20	23	193	3.07	<1	0.03	<1	0.53	0.030	<1
DL-17-11 (0A)	0.4	4.45	14	21	<0.5	1	1.42	1	18	7	208	8.41	<1	0.06	<1	1.90	0.090	<1
DL-17-11 (0B)	0.2	3.05	11	27	< 0.5	1	1.46	1	10	4	137	5.60	<1	0.10	<1	1.31	0.066	<1
DL-17-11 (0C)	<0.2	2.28	7	16	<0.5	2	1.45	<1	5	6	32	3.81	<1	0.08	<1	0.93	0.052	<1
DL-17-11 (5mm)	0.6	3.30	15	47	<0.5	<1	1.04	1	27	3	256	5.80	<1	0.13	<1	1.70	0.064	<1
DL-17-11 (10mm)	0.2	2.90	9	7	< 0.5	2	0.62	1	18	5	74	4.93	<1	0.03	<1	1.70	0.069	<1
DL-17-12	<0.2	0.04	2	1	<0.5	<1	0.01	<1	<1	9	7	0.12	<1	< 0.01	<1	0.02	< 0.002	<1
DL-17-13	0.7	2.40	11	35	<0.5	3	0.41	1	7	4	121	6.26	<1	0.10	6	1.08	0.044	<1
DL-17-14	0.3	2.04	11	8	<0.5	1	1.35	<1	16	5	204	4.82	<1	0.06	<1	0.74	0.048	<1
LS4	<0.2	6.07	14	319	1.6	1	0.51	1	41	88	52	10.8	<1	0.55	39	1.14	0.681	14
DL-17-15 A	0.3	3.05	22	155	<0.5	3	3.13	1	28	20	99	4.88	<1	0.50	<1	1.94	0.088	<1
DL-17-15 B	0.3	3.31	16	253	<0.5	4	3.75	1	23	15	100	5.02	<1	0.84	<1	1.97	0.090	<1
DL-17-16 A	0.2	4.83	22	71	<0.5	2	2.40	1	30	62	91	6.28	<1	0.29	<1	3.40	0.100	<1
DL-17-16 B	0.3	5.93	18	11	<0.5	2	6.58	1	28	74	114	7.26	<1	0.04	<1	4.41	0.135	<1
DL-17-17 A	<0.2	3.95	13	76	<0.5	2	1.62	<1	22	60	116	4.36	<1	0.54	<1	2.95	0.062	<1
DL-17-17 B	<0.2	3.79	12	56	<0.5	2	1.65	1	20	60	93	4.06	<1	0.38	<1	2.80	0.060	<1
DL-17-19	<0.2	5.03	17	62	<0.5	2	1.46	2	32	64	138	7.08	<1	0.19	3	4.31	0.116	<1
DL-17-20 A DL-17-20 B	0.2	1.66	8 12	81 63	<0.5 <0.5	2	1.12	<1 1	5 24	10 13	37 156	2.20	<1 <1	0.58	5 <1	0.87 3.20	0.033	<1 <1
DE-17-20 D	0.2	4.50	12		20.5	2	1.70					0.77		0.20			0.032	-
DL-17-20 C	<0.2	1.76	10	26	<0.5	1	2.25	<1	5	8	16	2.43	<1	0.10	6	0.99	0.033	<1
DL-17-20 D	0.2	6.30	11	79	<0.5	3	3.28	2	24	13	8	8.86	<1	0.36	4	5.35	0.148	<1
DL-17-21	< 0.2	1.71	10	130	< 0.5	2	1.38	<1	6	23	152	2.89	<1	0.38	13	0.92	0.046	<1
DL-17-21 A DL-17-22 A	<0.2	1.62 9.11	3 9	9 70	<0.5 <0.5	<1 <1	0.07	<1 3	5 33	18 8	2 449	2.44	<1 <1	<0.01 0.03	<1 <1	1.18 3.81	0.036 0.258	<1 <1
	1.5	9.11		70	<0.5		0.00	3	33		-++5	13.0	<1	0.03	<1	3.01	0.200	N1
DL-17-22 B	0.2	4.01	9	469	<0.5	5	0.86	1	14	4	84	6.98	<1	1.36	12	1.85	0.099	<1
DL-17-22 C	1.1	0.39	8	21	<0.5	<1	0.89	<1	6	9 6	1350	1.00	<1	0.04	<1	0.18	0.030	<1
DL-17-22 D DL-17-23	0.6	6.38 3.00	13 15	787 321	<0.5 <0.5	4	0.78	2	24 18	6	692 325	10.8 5.54	<1 <1	2.19	8	2.55	0.154 0.061	<1 <1
DL-17-22 D R	0.4	6.20	12	770	<0.5	3	0.01	2	23	4	675	10.6	<1	2.14	8	2.51	0.150	<1
	0.0	0.20			-3.0	0	2.77	-	20	0	5/0	.0.0			0	2.01	0.100	1044

Page 2 of 5

Skye Kushner Attention: Skye Kushne	er	SRC Geoanalytical Laboratories 125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8													Report No: G-2017-1541							
PO #/Project: Samples: 55			Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca														Date of Report: Aug 31, 2017					
Simples ee								E lement I ua Regia														
Sample Number	Ag ppm	AI2O3 wt %	As ppm	Ba ppm	Be ppm	Bi ppm	CaO wt %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe2O3 wt %	Hg ppm	K2O wt %	La ppm	MgO wt %	MnO wt %	Mo ppm				
LS4 DL-17-24 A	0.2 <0.2	6.12 4.87	15 24	316 158	1.5 <0.5	1	0.52	1	41 34	89 13	55 34	10.9 6.03	<1 <1	0.57	39 <1	1.16 3.22	0.694 0.082	14 <1				
DL-17-24 B	<0.2	4.30	18	123	<0.5	3	0.59	<1	29	11	38	5.33	<1	0.85	<1	2.75	0.070	<1				
DL-17-25 DL-17-26	<0.2 0.3	3.86 3.50	7 16	21 185	<0.5 <0.5	2	0.99 0.89	1	21 24	20 25	38 97	4.96 4.53	<1 <1	0.07 0.82	<1 <1	2.66 2.09	0.072 0.058	<1 <1				
DL-17-27 A	0.5	2.41	11	55	<0.5	<1	0.74	<1	10	6	555	3.90	<1	0.20	<1	1.44	0.049	<1				
DL-17-28 DL-17-29 A	0.2	5.26 4.24	9	491 18	<0.5 <0.5	6 2	0.49	1	25 22	6 7	52 95	8.22 7.36	<1 <1	1.68 0.05	2	3.15 2.78	0.095	<1 <1				
DL-17-29 B	0.3	4.51	8	13	<0.5	1	1.28	1	22	7	130	7.87	<1	0.03	1	3.02	0.115	<1				
DL-17-30	<0.2	1.89	8	12	<0.5	2	1.14	<1	6	9	9	2.86	<1	0.04	2	1.02	0.039	<1				
DL-17-31	<0.2	5.48	15	98	<0.5	3	1.42	1	27	3	134	9.97	<1	0.43	<1	3.34	0.097	<1				
DL-17-32	0.3	7.85	12	17	< 0.5	2	3.92	2	27	18	22	11.1	<1	0.04	<1	4.41	0.188	<1				
DL-17-33 A DL-17-33 B	<0.2 <0.2	2.63 3.65	13 17	20 34	<0.5 <0.5	<1 3	1.78 0.44	1	14 16	6 25	277 27	4.28	<1 <1	0.04	<1 <1	1.88 2.36	0.070 0.076	<1 <1				
DL-17-33 B R	0.2	3.72	14	35	<0.5	3	0.45	1	16	28	27	6.02	<1	0.14	<1	2.42	0.078	<1				

Page 3 of 5

Skye Kushner Attention: Skye Ku	ushner				125 -			nalytic				2X8				Rep	ort No: G-2	017-
PO #/Project: Samples: 55								(306) 93								Date of F	leport: Aug	31,
Samples, 55								Element ua Regia										
Sample	Na2O	Ni	P2O5	Pb	S	Sb	Sc	Se	Sn	Sr	TiO2	U, ICP	v	w	Y	Zn	Zr	
Number	wt %	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	
LS4	0.02	52	0.558	23	1710	<1	8	2	<1	23	0.15	31	101	1	20	215	1	
DL-17-1	0.01	30	0.318	1	354	<1	5	2	2	17	0.04	8	63	<1	12	82	2	
DL-17-2	< 0.01	6	0.049	2	52	<1	<1	<1	1	2	< 0.01	4	7	<1	1	40	<1	
DL-17-3	< 0.01	1	0.007	5	14	<1	<1	<1	<1	<1	< 0.01	2	1	<1	<1	13	<1	
DL-17-4	0.03	33	0.352	5	87	3	2	1	<1	24	0.27	1	66	<1	4	88	<1	
DL-17-5	<0.01	<1	< 0.002	<1	<10	<1	<1	<1	<1	<1	<0.01	<1	<1	<1	<1	3	<1	
DL-17-6	< 0.01	13	0.003	1	78	<1	<1	1	2	2	< 0.01	<1	3	<1	1	20	<1	
DL-17-7	0.01	11	0.114	<1	144	<1	2	2	2	35	0.04	1	26	<1	5	31	<1	
DL-17-8	<0.01	1	0.004	2	<10	<1	<1	<1	<1	<1	< 0.01	<1	1	<1	<1	7	<1	
DL-17-9	<0.01	2	0.014	4	560	<1	<1	<1	<1	1	<0.01	<1	<1	<1	<1	6	<1	
DL-17-10	<0.01	3	0.037	6	16	<1	<1	1	<1	3	< 0.01	<1	3	<1	1	23	<1	
DL-17-11	0.03	8	0.080	1	6230	<1	2	2	2	30	0.08	1	21	1	2	16	<1	
DL-17-11 (0A)	0.07	4	0.509	1	4280	<1	14	5	1	8	0.08	2	22	<1	13	123	1	
DL-17-11 (0B)	0.09	2	0.432	<1	2390	<1	8	2	1	6	0.07	1	17	<1	10	70	1	
DL-17-11 (0C)	0.10	1	0.417	<1	780	<1	8	3	2	7	0.06	2	15	<1	10	56	1	
DL-17-11 (5mm)	0.10	2	0.245	7	3290	<1	7	2	1	4	0.08	<1	56	<1	7	84	<1	
DL-17-11 (10mm)	0.06	7	0.132	7	2760	<1	6	4	<1	2	0.10	1	61	1	5	65	1	
DL-17-12	< 0.01	<1	0.003	6	26	<1	<1	<1	<1	<1	< 0.01	<1	1	<1	<1	7	<1	
DL-17-13	0.03	<1	0.324	4	1800	1	2	4	<1	12	0.11	1	12	1	5	54	2	
DL-17-14	0.09	1	0.432	<1	4960	<1	7	3	2	7	0.06	5	16	1	10	39	<1	
LS4	0.02	53	0.569	24	1690	<1	8	2	<1	23	0.14	32	98	<1	20	213	2	
DL-17-15 A	0.02	16	0.148	3	1750	<1	3	3	1	20	0.14	2	52	<1	3	77	<1	
DL-17-15 B	0.02	12	0.123	9	1700	<1	2	2	1	22	0.19	<1	60	<1	3	80	<1	
DL-17-16 A	0.02	25	0.104	<1	190	<1	3	2	1	12	0.11	4	53	<1	3	68	<1	
DL-17-16 B	0.01	24	0.105	<1	241	<1	6	4	3	26	0.07	<1	74	1	4	64	<1	
DL-17-17 A	0.01	21	0.103	1	202	<1	2	3	1	14	0.10	<1	39	<1	2	54	<1	
DL-17-17 B	0.01	19	0.112	4	129	<1	2	3	1	14	0.09	<1	34	<1	2	55	<1	
DL-17-19	0.02	27	0.118	11	91	<1	7	3	1	12	0.09	<1	91	<1	6	188	<1	
DL-17-20 A	0.04	5	0.102	3	387	<1	1	2	1	13	0.11	<1	16	<1	1	67	4	
DL-17-20 B	0.03	9	0.119	4	369	<1	4	3	1	11	0.12	<1	108	<1	4	99	<1	
DL-17-20 C	0.03	5	0.141	7	190	<1	1	1	3	19	0.04	<1	13	<1	2	84	3	
DL-17-20 D	0.02	23	0.209	1	67	<1	8	<1	2	29	0.10	<1	130	<1	8	166	<1	
DL-17-21	0.04	1	0.159	7	205	<1	4	1	1	13	0.11	<1	29	<1	6	55	3	
DL-17-21 A	0.02	9	0.026	3	<10	<1	<1	2	<1	2	< 0.01	<1	13	<1	<1	43	<1	
DL-17-22 A	<0.01	8	0.022	<1	262	<1	2	7	<1	2	0.03	1	46	<1	3	221	<1	
DL-17-22 B	0.06	<1	0.270	1	202	2	6	1	<1	10	0.23	<1	59	1	8	92	4	
DL-17-22 C	<0.01	1	0.116	6	843	<1	<1	<1	2	5	<0.01	<1	2	<1	<1	52	<1	
DL-17-22 D	0.02	1	0.293	5	669	4	8	1	<1	12	0.36	<1	74	1	8	114	3	
DL-17-23	0.05	1	0.209	1	2250	3	5	3	<1	10	0.23	<1	31	<1	5	57	3	
DL-17-22 D R	0.02	1	0.287	4	662	4	8	<1	<1	11	0.35	<1	73	<1	8	112	3	

Page 4 of 5

Report No: G-2017-1541

1, 2017

Skye Kushner Attention: Skye Kus	shner		SRC Geoanalytical Laboratories 125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8															Report No: G-2017-1541		
PO #/Project: Samples: 55							118 Fax:		Date of Report: Aug 31, 2017											
Multi-Element ICP Analysis Aqua Regia Digestion																				
Sample Number	Na2O wt %	Ni ppm	P2O5 wt %	Pb ppm	S ppm	Sb ppm	Sc ppm	Se ppm	Sn ppm	Sr ppm	TiO2 wt %	U, ICP ppm	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm			
LS4 DL-17-24 A	0.02	53 23	0.562 0.105	24 <1	1680 51	<1 <1	7 3	2 3	<1 <1	24 14	0.16	31 <1	99 69	<1 <1	20 3	210 74	2 <1			
DL-17-24 B DL-17-25	0.02	18 14	0.094	<1 6	50 38	<1 <1	2	5	<1 <1	13 9	0.14	<1 <1	61 57	<1 <1	2	58 83	<1 <1			
DL-17-26	0.05	19	0.142	3	481	<1	2	4	<1	14	0.15	<1	56	<1	3	77	<1			
DL-17-27 A DL-17-28	0.05 0.04	4 9	0.135 0.190	3 <1	121 248	<1 3	4	<1 2	1 <1	13 8	0.09	<1 <1	51 99	<1 <1	3 5	49 102	1			
DL-17-29 A	0.03	8	0.173	<1	237	<1	4	3	1	24	0.09	<1	88	<1	4	99	<1			
DL-17-29 B DL-17-30	0.03 0.03	8 3	0.174 0.120	<1 2	332 69	<1 <1	6 1	3 1	<1 2	23 12	0.09 0.08	<1 <1	115 22	<1 <1	5 2	110 60	<1 2			
DL-17-31 DL-17-32	0.06	4 12	0.167 0.107	<1 <1	496 88	<1 <1	6 12	1 4	<1 1	10 22	0.12	<1 <1	151 189	<1 1	7 6	122 143	<1 <1			
DL-17-33 A DL-17-33 B	0.05	6 13	0.089 0.200	30 5	514 137	<1 <1	5 1	2 1	1 <1	14 7	0.11 0.11	<1 <1	70 62	<1 <1	4	156 115	<1 <1			
DL-17-33 B R	0.02	13	0.202	4	133	<1	1	2	<1	7	0.11	<1	63	<1	3	118	<1			

Aqua Regia: A 0.5 g pulp is digested with 2.00 ml of 3:1 HCL:HNO3 for 1 hour at 95 C. The standard is LS4.

Page 5 of 5